

ABSORPTION OF NO_x IN PACKED COLUMN (I) —MATHEMATICAL MODELLING—

Hoo Kun LEE, Kwan Sik CHUN, Hyun Soo PARK, and Jong Hyun CHO*

Korea Advanced Energy Research Institute

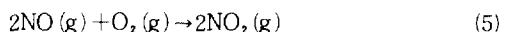
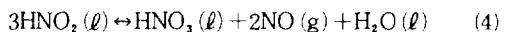
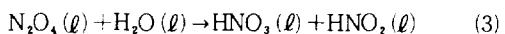
*Dept. of Chemical Engineering, Chonnam National University

(Received 30 January 1989 • accepted 19 June 1989)

Abstract—A mathematical model for an absorption of nitrogen oxides into water in packed column was developed based on the mass-transfer coefficient in packed column and the chemical reaction accompanying NO_x absorption produces HNO₃ and HNO₂ in the liquid phase. The subsequent dissociation of HNO₂ in the liquid-phase results in the formation of HNO₃ and NO gas, and then this NO gas follows to be oxidized by O₂ in air. The important factors influenced on the absorption of NO_x are the oxidation state of NO gas and the partial pressure of nitrogen oxides in the gas. The efficiency of NO_x absorption increases with the increase of the partial pressure of NO_x. The most critical value for using the model is the constant of $(\sqrt{DK_3}/H)_{N_2O_4}$. The selection of 11×10^{-4} kg·mol/atm·m²·sec for $(\sqrt{DK_3}/H)_{N_2O_4}$ is resonable for this model.

INTRODUCTION

The scrubbing of NO_x (nitrogen oxides) from gaseous mixtures of air and NO_x is very important process in production of nitric acid as well as in air pollution abatement of industrial process. Interest in this absorption process is increasing due to current problem in air pollution and resource recovery. The absorption of gaseous NO_x into water and dilute HNO₃, and the gas-phase oxidation reaction of NO provide the basis for one method of NO_x removals. Such an absorption process is accompanied by the reactions of NO_x with water, resulting in the production of HNO₃. This scheme is attractive for the proposed application because the produced HNO₃ could be reused in the plant.




The most pronounced effect on the NO_x conversion was dependent on the variation in the oxidation state of the gas. The second largest effect was produced by the variation in the partial pressure of NO_x in the feed gas. In general, the NO gas has a much lower solubility and reactivity than the NO₂⁺, defined as the sum of the NO₂ concentration and the product of two times its equilibrium polymer concentration, N₂O₄ [1,2]. The higher NO_x partial pressure produces a larger proportional amount of higher molecular weight species, which are more absorbable and reactive.

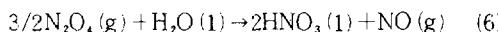
The NO₂-N₂O₄ equilibrium and the absorption of gaseous N₂O₄ into water are simulated mathematically

and combined into an equation for N₂O₄ absorption based on the mass-transfer in the packed column. The disappearance of liquid HNO₂ is simulated, resulting in the production of gaseous NO. NO is oxidized with O₂ in the gas phase. Then a mathematical expression was developed for NO_x absorption in the packed column.

ABSORPTION MECHANISM ASSOCIATED WITH CHEMICAL REACTION

The nitrogen oxides of interest in the gas-phase are NO, NO₂ and N₂O₄. The basic chemical reactions at the steady-state absorption of NO_x compounds into water or dilute HNO₃ may be written as follows [3-6]:

where (g) and (l) indicate gas and liquid species, respectively. A review of the literature indicates that the following assumptions about the overall reactions may be made:


1) The NO₂ and N₂O₄ are in continuous gas-phase equilibrium [6-8],

2) Reaction of N_2O_4 with water proceeds by means of a fast pseudo first-order liquid-phase reaction[2,5,8-15]. When the partial pressure of NO_2^* is higher than 0.01 atm, this is the predominant absorption reaction[2].

3) Liquid HNO_2 decomposes as described by reaction (4) [16], and

4) Oxidation of gaseous NO occurs as an overall third-order gas-phase reaction [17-21].

Reaction (3) and (4) are sometimes combined as [9,10,13]

Reaction (1) through (5) adequately describe the absorption process if the gaseous NO concentration is below 1,000 ppm or the gaseous NO_x concentration is moderately high.

The gas phase is assumed to be saturated with H_2O consistent with the temperature and liquid HNO_3 concentration. The partial pressure of HNO_3 is usually taken to be zero by comparing with the NO_x partial pressures. The HNO_2 partial pressure is usually smaller than the H_2O partial pressure and is always assumed to be equal or below the saturated partial pressure.

At NO_2 - N_2O_4 equilibrium, $P_{\text{N}_2\text{O}_4}$ and P_{NO_2} may be calculated using the quantity α that represents the degree of dissociation of N_2O_4 . The partial pressure of N_2O_4 and NO_2 can be expressed in terms of NO_2^* and α [22].

The hydrolysis of N_2O_4 during the absorption of N_2O_4 into water or dilute nitric acid is essentially irreversible due to low concentrations of HNO_2 and HNO_3 in the liquid phase. The decomposition of aqueous nitrous acid in the liquid phase is generally expressed as a reaction (4). The NO generated by the decomposition of HNO_2 is oxidized with O_2 in the gas phase. The hydrolysis of N_2O_4 , the decomposition of aqueous nitrous acid and the oxidation of NO in the gas phase were interpreted in the previous paper[22]. The values of $(\overline{D}\overline{K}_3/\overline{H})_{\text{N}_2\text{O}_4}$ and reaction constants of K_4 and K_5 are used with the same values in the previous papers[22,23]. Where K_4 and K_5 are the reaction rate constant for reaction (4) and (5).

THE CALCULATION OF THE FLUX OF NO, NO_2^* AND N_2O_4

The steady-state transport of each absorbing component, j , across both the gas and liquid film is expressed by Danckwerts[24] as

$$I_j = -k_{G,j}(P_j^t - P_j) = (Ek_L)_j [C_j^t - C_j] \quad (7)$$

In the case of physical absorption or desorption, the enhancement factor, E , is taken to be unity. The absorbing species are NO_2 and N_2O_4 and the desorbing species are NO and HNO_2 .

A flux of components, j , through the gas film may be represented by [6]

$$I_j = -\frac{D_{G,j}}{RT} \left(\frac{dP_j}{dz} \right) = k_{G,j}(P_j - P_j^t) \quad (8)$$

A flux of component NO_2^* through the gas film in a steady-state process may be expressed by

$$I_{\text{NO}_2^*} = I_{\text{NO}_2} + 2I_{\text{N}_2\text{O}_4} \quad (9)$$

The local absorption rate of NO_2^* and NO is expressed in terms of the gas-film mass-transfer coefficient as

$$-I_{\text{NO}_2^*} = \frac{1}{RT} (D_{\text{NO}_2} \frac{dP_{\text{NO}_2}}{dz} + 2D_{\text{N}_2\text{O}_4} \frac{dP_{\text{N}_2\text{O}_4}}{dz}) \quad (10)$$

and

$$-I_{\text{NO}} = \frac{D_{\text{NO}}}{RT} \frac{dP_{\text{NO}}}{dz} \quad (11)$$

The gradient of N_2O_4 in the gas film may be expressed as follows:

$$\frac{dP_{\text{N}_2\text{O}_4}}{dz} = 2K_1 P_{\text{NO}_2} \frac{dP_{\text{NO}_2}}{dz} \quad (12)$$

Substituting Eq. (12) into Eq. (10) gives

$$-I_{\text{NO}_2^*} = \frac{1}{RT} (D_{\text{NO}_2} + 4D_{\text{N}_2\text{O}_4} K_1 P_{\text{NO}_2}) \frac{dP_{\text{NO}_2}}{dz} \quad (13)$$

Separating the variable and integration yields:

$$I_{\text{NO}_2^*} = k_{G,\text{NO}_2} (P_{\text{NO}_2} - P_{\text{NO}_2}^t) + 2k_{G,\text{N}_2\text{O}_4} K_1 \{P_{\text{NO}_2}^2 - (P_{\text{NO}_2}^t)^2\} \quad (14)$$

and

$$I_{\text{NO}} = k_{G,\text{NO}} (P_{\text{NO}} - P_{\text{NO}}^t) \quad (15)$$

The difference of NO_2^* and NO can be expressed as:

$$I_m = I_{\text{NO}_2^*} - I_{\text{NO}} \quad (16)$$

Utilizing Eqs. (14) and (15), I_m may be represented by

$$I_m = k_{G,\text{NO}_2} (P_{\text{NO}_2} - P_{\text{NO}_2}^t) + 2k_{G,\text{N}_2\text{O}_4} K_1 \{P_{\text{NO}_2}^2 - (P_{\text{NO}_2}^t)^2\} - k_{G,\text{NO}} (P_{\text{NO}} - P_{\text{NO}}^t) \quad (17)$$

The absorption/desorption of the indicated gas species through the liquid film is represented by:

$$I_{\text{NO}_2^*} = (Ek_L)_{\text{NO}_2} [C_{\text{NO}_2}^t - C_{\text{NO}_2}] + 2(Ek_L)_{\text{N}_2\text{O}_4} [C_{\text{N}_2\text{O}_4}^t - C_{\text{N}_2\text{O}_4}] \quad (18)$$

and

$$I_{\text{NO}} = (Ek_L)_{\text{NO}} [C_{\text{NO}}^t - C_{\text{NO}}] \quad (19)$$

Defining E to be 1 for physical absorption and assuming that the gas-phase resistance to the absorption rate of N_2O_4 is negligible and that the hydrolysis reaction of N_2O_4 is fast pseudo-first order, i.e. C_{NO_2} and $C_{\text{N}_2\text{O}_4}$ are negligible, Eq. (18) and (19) become to be

$$I_{\text{NO}_2}^* = k_{L,\text{NO}_2} C_{\text{NO}_2}^t + 2(\overline{DK}_3)_{\text{N}_2\text{O}_4} C_{\text{N}_2\text{O}_4}^t \quad (20)$$

and

$$I_{\text{NO}} = k_{L,\text{NO}} (C_{\text{NO}}^t - C_{\text{NO}}) \quad (21)$$

Using the assumption that Henry's Law applies at the gas-liquid interface, $[C^t = H'P^t]$

$$I_{\text{NO}_2}^* = \left(\frac{k_L}{H}\right)_{\text{NO}_2} P_{\text{NO}_2}^t + 2\left(\frac{\overline{DK}_3}{H}\right)_{\text{N}_2\text{O}_4} P_{\text{N}_2\text{O}_4}^t \quad (22)$$

or

$$I_{\text{NO}_2}^* = \left(\frac{k_L}{H}\right)_{\text{NO}_2} P_{\text{NO}_2}^t + 2\left(\frac{\overline{DK}_3}{H}\right)_{\text{N}_2\text{O}_4} K_1 (P_{\text{NO}_2}^t)^2 \quad (23)$$

$$I_{\text{NO}} = \left(\frac{k_L}{H}\right)_{\text{NO}} P_{\text{NO}}^t - k_{L,\text{NO}} C_{\text{NO}} \quad (24)$$

and

$$I_{\text{NO}} = \left(\frac{k_L}{H}\right)_{\text{NO}_2} P_{\text{NO}_2}^t + 2\left(\frac{\overline{DK}_3}{H}\right)_{\text{N}_2\text{O}_4} K_1 (P_{\text{NO}_2}^t)^2 - \left(\frac{k_L}{H}\right)_{\text{NO}} P_{\text{NO}}^t + k_{L,\text{NO}} C_{\text{NO}} \quad (25)$$

Utilizing Eq. (14) and (23), after some rearrangement,

$$2K_1\left(\frac{\overline{DK}_3}{H}\right)_{\text{N}_2\text{O}_4} + 2K_1 k_{G,\text{N}_2\text{O}_4} \{ (P_{\text{NO}_2}^t)^2 + \left(\frac{k_L}{H}\right)_{\text{NO}_2} + k_{G,\text{NO}_2} \} P_{\text{NO}_2}^t - 2K_1 k_{G,\text{N}_2\text{O}_4} P_{\text{NO}_2}^t - k_{G,\text{N}_2\text{O}_4} P_{\text{NO}_2} = 0 \quad (26)$$

Eq. (26) is a quadratic formula of $P_{\text{NO}_2}^t$, and then $P_{\text{NO}_2}^t$ may be obtained by taking the positive root.

The bulk-phase concentration of NO, C_{NO} , is calculated from a modified Abel-Schmid's expression[16],

$$C_{\text{NO}} = \frac{P_{\text{NO}}}{H_{\text{NO}}} = \frac{1}{H_{\text{NO}}} \left(\frac{C_{\text{HNO}_2}^3}{K_4 C_{\text{H}} C_{\text{NO}_3}} \right)^{1/2} \quad (27)$$

Substitution and rearrangement of Eq. (17) into Eq. (25) become to be

$$P_{\text{NO}}^t = \frac{1}{k_{G,\text{NO}} + (k_L/H)_{\text{NO}}} \left[\left\{ \left(\frac{k_L}{H}\right)_{\text{NO}_2} + k_{G,\text{NO}_2} \right\} P_{\text{NO}_2}^t + 2\left(\frac{\overline{DK}_3}{H}\right)_{\text{N}_2\text{O}_4} K_1 + 2k_{G,\text{N}_2\text{O}_4} K_1 \right] \{ (P_{\text{NO}_2}^t)^2 - k_{G,\text{NO}_2} P_{\text{NO}_2}^t - 2k_{G,\text{N}_2\text{O}_4} K_1 P_{\text{NO}_2}^t + k_{G,\text{NO}} + k_{L,\text{NO}} C_{\text{NO}} \} \quad (28)$$

P_{NO}^t and $P_{\text{NO}_2}^t$ are determined, and then the flux of NO_2 , N_2O_4 and NO are calculated as:

$$I_{\text{NO}_2} = \left(\frac{k_L}{H}\right)_{\text{NO}_2} P_{\text{NO}_2}^t \quad (29)$$

$$I_{\text{N}_2\text{O}_4} = \left(\frac{\overline{DK}_3}{H}\right)_{\text{N}_2\text{O}_4} P_{\text{N}_2\text{O}_4}^t \quad (30)$$

and

$$I_{\text{NO}} = \left(\frac{k_L}{H}\right)_{\text{NO}} P_{\text{NO}}^t - k_{L,\text{NO}} C_{\text{NO}} \quad (31)$$

THE CONVERSION OF NO TO NO_2 IN THE GAS-PHASE OF A PACKED COLUMN

Bodenstein studies the gas-phase oxidation of gaseous NO and confirmed the third-order kinetics consistent with the following rate equation[17].

$$-\gamma_{\text{NO}} = K_s P_{\text{NO}}^t P_{\text{O}_2} \quad (32)$$

The gas flowing through a packed column is considered to be in plug-flow. At steady state the material balance for NO around a differential gas space is

$$\text{Input} = \text{Output} + \text{Disappearance of NO by reaction} \quad (33)$$

The system is represented by the following equation such as $G(P_{\text{NO}})_m/(\text{RT})$, $G(P_{\text{NO}})_{out}/(\text{RT})$, and $[G(-\gamma_{\text{NO}})/\text{RT}] \tau$. Inserting these terms in Eq. (33), which, after rearrangement and division by RT , yields:

$$G(P_{\text{NO}})_m dX_{\text{NO}} = -\gamma_{\text{NO}} dV \quad (34)$$

Further rearrangement yields an integral form,

$$\frac{1}{G(P_{\text{NO}})_m} \int_0^V dV = \int_0^{X_{\text{NO}}} \frac{dX_{\text{NO}}}{-\gamma_{\text{NO}}} \quad (35)$$

The reaction rate may be expressed as:

$$-\gamma_{\text{NO}} = K_s \left\{ (P_{\text{NO}})_m (1 - X_{\text{NO}}) \right\}^2 (P_{\text{O}_2})_m \left(1 - \frac{(P_{\text{NO}})_m}{2(P_{\text{O}_2})_m} X_{\text{NO}} \right) \quad (36)$$

Combining terms and integration yields:

$$\frac{K_s (P_{\text{NO}})_m (P_{\text{O}_2})_m V}{G} - \frac{1}{1 - (P_{\text{NO}})_m/2(P_{\text{O}_2})_m} \left\{ \frac{1}{1 - X_{\text{NO}}} \right. \\ \left. + \frac{(P_{\text{NO}})_m/2(P_{\text{O}_2})_m \ln \frac{1 - (P_{\text{NO}})_m/2(P_{\text{O}_2})_m X_{\text{NO}}}{1 - X_{\text{NO}}}}{1 - \frac{(P_{\text{NO}})_m}{2(P_{\text{O}_2})_m}} \right\} = 0 \quad (37)$$

Solution of this polynomial involves finding the root, X_{NO} , between zero and 1. This solution is accomplished using a simple bisection routine.

A MODEL FOR NO_x ABSORPTION ON THE PACKED COLUMN

The absorption phenomena involved in the scrubbing of NO_x from gas streams have been simulated for an incremental column volume as shown in Fig. 1. The change in component partial pressures and concentrations, as well as gas and liquid flow rates in the increment, may be neglected. The gas-phase is assumed to be ideal and isothermal conditions. The mathematical model is developed to be used in the computation of the partial pressure of gas species leaving the increment and concentration of liquid species entering the increment. The mathematical model developed is based on mass-transfer data for packed column and chemical reaction information for the $\text{NO}_x\text{-H}_2\text{O-HNO}_x$ systems.

The steady-state gas-phase performance equation for the incremental absorption phenomena of NO_2^* and NO may be expressed as

$$\text{input} = \text{output} + \text{disappearance} + \text{disappearance/} \\ \text{due to gas-} \quad \text{appearance due} \\ \text{phase reaction} \quad \text{to absorption} \\ \text{or desorption} \\ (38)$$

In the above equation, the disappearance terms are positive while the appearance terms are negative. The molar input of the component, j , to the column incre-

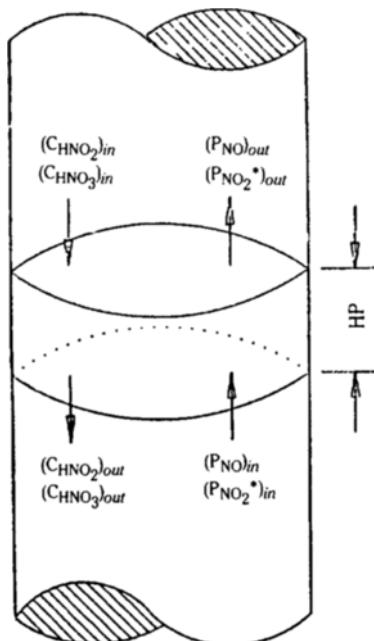


Fig. 1. Representation of incremental volume in a packed column.

ment may be represented as $G(P)_m/RT$, while the output is $G(P)_o/RT$.

The extent of the gas-phase oxidation of NO to NO_2 occurring in the increment, X_{NO} , is computed and used to adjust the molar rates of NO and NO_2 leaving the increment as $\pm \{G P_{\text{NO}} X_{\text{NO}}/(RT)\}$.

The molar rate of disappearance or appearance of NO_2^* and NO in the incremental gas-phase is obtained as $a(I_{\text{NO}_2^*} a \cdot \Delta V)$ and $(I_{\text{NO}} a \cdot \Delta V)$. The term V is the incremental column volume. The developed mass balance equation in the gas-phase performance yields[23]:

$$\frac{G(P_{\text{NO}_2^*})_{in}}{RT} = \frac{G(P_{\text{NO}_2^*})_{out}}{RT} - (I_{\text{NO}_2} + 2I_{\text{NO}_4}) a \cdot \Delta V \\ - \frac{GP_{\text{NO}} X_{\text{NO}}}{RT} \quad (39)$$

$$\frac{G(P_{\text{NO}})_{in}}{RT} = \frac{G(P_{\text{NO}})_{out}}{RT} + (I_{\text{NO}}) a \cdot \Delta V + \frac{GP_{\text{NO}} X_{\text{NO}}}{RT} \quad (40)$$

An overall steady-state performance equation for the liquid-phase of the incremental absorption reaction phenomena with respect to aqueous nitric and nitrous acids may be expressed as:

$$\text{input of} = \text{output of} - \text{production from} \\ \text{HNO}_3 \quad \text{HNO}_3 \quad \text{reactions} \\ - \text{production from} \\ \text{decomposition of HNO}_3 \quad (41)$$

$$\text{input of} = \text{output of} - \text{appearance} \\ \text{HNO}_2 \quad \text{HNO}_2 \quad \text{from reaction} \\ + \text{decomposition} \\ \text{of HNO}_2 \quad (42)$$

The production of nitric acid in the increment due to the decomposition may be represented by $\{1/2 k_{L,\text{NO}} [C_{\text{NO}} - C'_{\text{NO}}]\}$ and the appearance of nitrous acid by $\{-3/2 k_{L,\text{NO}} (C_{\text{NO}} - C'_{\text{NO}})\}$. Incorporating these relationships into the liquid-phase performance equations yields:

$$L(C_{\text{HNO}_3})_{in} = L(C_{\text{HNO}_3})_{out} - (1/2 I_{\text{NO}_2} + I_{\text{NO}_4}) a \cdot \Delta V \\ + 1/2 I_{\text{NO}} a \cdot \Delta V \quad (43)$$

$$L(C_{\text{HNO}_2})_{in} = L(C_{\text{HNO}_2})_{out} - (1/2 I_{\text{NO}} + I_{\text{NO}_4}) a \cdot \Delta V \\ - 3/2 I_{\text{NO}} a \cdot \Delta V \quad (44)$$

By knowing or assuming $(P_{\text{NO}_2})_{in}$, $(P_{\text{NO}})_{in}$, $(C_{\text{HNO}_2})_{out}$ and $(C_{\text{HNO}_3})_{out}$ the absorption efficiency of NO_x , X_{NO_x} , may be calculated at the increment from Eq. (39) and (40) provided I_{NO_2} , I_{NO_4} and I_{NO} may be calculated. By using multiple increments, the NO_x removal performance of a packed column of any finite height can be modeled. An incremental height of 1 cm was used in these calculation.

For the mass-transfer coefficient in the packed column the values of k_G and a were calculated from correlation by Onda et al.[25].

$$\frac{k_G RT}{a_t D_G} = 2.0 \left(\frac{G'}{a_t \mu_G} \right)^{0.7} \left(\frac{\mu_G}{\rho_G D_G} \right)^{0.13} (a_t d_p)^{-2.0} \quad (45)$$

$$\frac{a}{a_t} = 1 - \exp \left(-1.45 \left(\frac{\sigma_G}{\sigma_L} \right)^{0.75} \left(\frac{L'}{a_t \mu_L} \right)^{0.1} \right) \quad (46)$$

$$\left(\frac{L'^2 a_t}{\rho_L^2 g} \right)^{-0.05} \left(\frac{L'^2}{\rho_L \sigma_L a_t} \right)^{0.2} \quad (46)$$

Also, the value of k_L was taken from experimental results by Mohunta et al.[26].

$$k_L a \left(\frac{a_t \mu_G}{g \rho_G} \right)^{2/3} \left(\frac{\mu_L}{g^2 \rho_L} \right)^{1/9} = 0.0025 \left(\frac{\mu_L L'^3 a_t^3}{g^2 \rho_L^4} \right)^{1/4} \left(\frac{\mu_L}{\rho_L D_L} \right)^{-1/2} \quad (47)$$

DISCUSSION

The program is designed to predict NO_x absorption efficiencies. The program moves increment by increment up to the top of a column iteration. Column iterations that are at least equal to the number of increments are required, due to the gas-liquid equilibrium expressed in reaction (4). When a molar balance of acid produced to NO_x absorbed is achieved, the program becomes to be converged to a solution.

The most effect on the absorption of NO_x is the oxidation state of the gas because the solubility of NO gas is much lower than the NO_2 and N_2O_4 . The next largest effect is the partial pressure of nitrogen oxides in the feed gas. The higher partial pressure of nitrogen oxides give more absorbable and reactive. This is explained by the increase of the driving force for the NO_x absorption.

The most critical value is the constant of $(\overline{D}K_3/H)_{\text{N}_2\text{O}_4}$, ranging from 5.7×10^{-4} to 11×10^{-4} kg·mol/atm·m²·sec. Model prediction of X_{NO_x} were calculated as the value of $(\overline{D}K_3/H)_{\text{N}_2\text{O}_4}$ is reasonable through the various investigators. The NO_x efficiencies predicted by this model are compared with the experimental data in the next paper (part II)[27]. As shown in figures in the paper the model prediction shows to be good agreement with the experimental data. In this study to select 11×10^{-4} kg·mol/atm·m²·sec as the value of $(\overline{D}K_3/H)_{\text{N}_2\text{O}_4}$ is reasonable through the comparison with the experimental data.

CONCLUSION

1. A mathematical NO_x absorption model for

packed column was developed based on mass-transfer information, chemical reaction and mechanistic phenomena specific to the $\text{NO}_x\text{-HNO}_3\text{-HNO}_2\text{-H}_2\text{O}$ system.

2. This model agrees with the experimental results quite well. This model could be useful for NO_x absorber design.

NOMENCLATURE

a	: gas-liquid interfacial area per unit volume [m ² /m ³]
a_t	: total surface area of packing per unit volume [m ⁻¹]
C_j	: liquid-phase concentration of component j [kg·mol/m ³]
C'_j	: interfacial concentration of component j [kg·mol/m ³]
D_j	: diffusivity of component j [m ² /s]
D_G	: diffusivity in the gas phase [m ² /s]
D_L	: diffusivity in the liquid phase [m ² /s]
E	: enhancement factor [-]
G	: gas flow rate [m ³ /s]
G'	: superficial mass velocity of gas [kg/m ² ·s]
L'	: superficial mass velocity of liquid [kg/m ² ·s]
g	: gravitational constant [m ² /s]
H_j	: Henry's law constant of component j [m ³ atm/kg·mol]
I_j	: local absorption rate of component j [kg·mol/m ³ ·s]
K_j	: reaction rate constant for reaction i [(kg·mol/m) ¹⁻ⁿ /s]
k_{Gj}	: gas-phase mass-transfer coefficient for component j [kg·mol/m ² ·atm·s]
k_{Lj}	: liquid-phase mass-transfer coefficient for component j [kg·mol/m ² ·atm·s]
$K_{P,1}$: pressure equilibrium constant for reaction (1) [atm]
L	: liquid flow rate [m ³ /s]
NO_2^*	: $\text{NO}_2 + 2\text{N}_2\text{O}_4$
NO_x	: $\text{NO} + \text{NO}_2^*$
P_j	: partial pressure of gas component j [atm]
R	: gas constant [m ³ ·atm/kg·mol·K]
T	: absolute temperature [K]
V	: volume of column [m ³]
X_{NO}	: conversion fraction of NO [-]

Greek Letters

τ	: residence time [S]
ΔV	: incremental column volume [m ³]
σ_c	: critical surface tension [kg/s]
σ_L	: surface tension [kg/s]
μ_G	: viscosity of gas [kg/m·s]

τ_L : viscosity of liquid [kg/m·s]

REFERENCES

1. Ashmore, R.G. and Tyler, B.J.: *J. Chem. Soc.*, 1017 (1961).
2. Andrew, S.P.S. and Hanson, D.: *Chem. Eng. Sci.*, **14**, 105 (1961).
3. Chamber, F.S. and Sherwood, T.K.: *Ind. Eng. Chem.*, **29**, 579 (1937).
4. Denbigh, K.G. and Prince, A.J.: *J. Chem. Soc.*, **53**, 790 (1947).
5. Counce, R.M. and Perona, J.J.: *Ind. Eng. Chem. Fund.*, **18**, 400 (1979).
6. Sherwood, T.K. et al.: "Mass Transfer", Chap. 8, McGraw-Hill (1975).
7. Verhock, F.H. and Daniels, F.J.: *J. Am. Chem. Soc.*, **53**, 1250 (1931).
8. Hoftyzer, P.J. and Kwanten, F.J.G.: "Process for Air Pollution Control", 2nd ed. pp. 164-187, Chemical Rubber Co., Cleverand (1972).
9. Caudle, P.G. and Denbigh, K.G.: *Trans. Faraday Soc.*, **49**, 39 (1953).
10. Wendel, M.M. and Pigford, R.L.: *Am. Inst. Chem. Eng. J.*, **4**, 249 (1958).
11. Dekker, W.A. et al.: *Chem. Eng. Sci.*, **11**, 61 (1959).
12. Moll, A.J.: The Rate of Hydrolysis of Nitrogen Tetroxide, Ph. D. Dissertation, Univ. of Washington (1966).
13. Peters, M.S. et al.: *AIChE J.*, **1**, 105 (1955).
14. Kramers, H. et al.: *Chem. Eng. Sci.*, **14**, 115 (1961).
15. Carbery, J.J.: *Chem. Eng. Sci.*, **9**, 189 (1959).
16. Abel, E. and Schmid, H.: *Z. Physik Chem.*, **132**, 56 (1928); **134**, 279 (1928); **136**, 135, 419 (1928).
17. Bodenstein, M.: *Z. Elektrochem.*, **24**, 183 (1918).
18. Hasche, R.L. and Patrick, W.A.: *J. Am. Chem. Soc.*, **47**, 1207 (1925).
19. Treacy, J.C. and Daniels, F.: *J. Am. Chem. Soc.*, **77**, 2033 (1955).
20. Morrison, M.E. et al.: *Ind. Eng. Chem. Fund.*, **5**, 175 (1966).
21. Grieg, J.D. and Hall, P.G.: *Trans. Faraday Soc.*, **63**, 655 (1967).
22. Lee, H.K. et al.: *Hwahak Konghak*, **24**, 255 (1986).
23. Kim, B.T. et al.: *Hwahak Konghak*, **25**, 169 (1987).
24. Danckwerts, P.V.: *Gas Liquid Reactions*, pp. 96-150, McGraw-Hill, NY (1970).
25. Onda, K., Takeuchi, H., and Okumoto, Y.: *J. of Chem. Eng.*, **1**, 56 (1968).
26. Mohunta, D.M., Vaidyanathan, A.S., and Laddha, G.S.: *Indian Chem. Eng.*, **11**, 73 (1969).
27. Lee, H.K. et al.: *Korean J. of Chem. Eng.*, Vol. 7, No. 1, "Absorption of NO_x into Water in a Packed Column, part II, Experimental, accepted (1989).